skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hutchison, Justin M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Ouyang Wei (Ed.)
    the central United States, PW disposal occurs through deep well injection, which can increase seismic activity. The treatment of PW for use in agriculture is an alternative to current disposal practices that can also provide supplemental water in regions where limited freshwater sources can affect agricultural production. This paper assesses the potential for developing PW as a water source for agriculture in the Anadarko basin, a major oil and gas field spanning parts of Kansas, Oklahoma, Colorado, and Texas. From 2011 to 2019, assessment of state oil and gas databases indicated that PW generation in the Anadarko Basin averaged 428 million m3/yr. A technoeconomic analysis of PW treatment was combined with geographical information on PW availability and composition to assess the costs and energy requirements to recover this PW as a non-conventional water resource for agriculture. The volume of freshwater economically extractable from PW was estimated to be between 58 million m3 per year using reverse osmosis (RO) treatment only and 82 million m3 per year using a combination of RO and mechanical vapor compression to treat higher salinity waters. These volumes could meet 1–2 % and 49–70 % of the irrigation and livestock water demands in the basin, respectively. PW recovery could also modestly contribute to mitigating the decline of the Ogallala aquifer by ~2 %. RO treatment costs and energy requirements, 0.3–1.5 $/m3 and 1.01–2.65 kWh/m3, respectively, are similar to those for deep well injection. Treatment of higher salinity waters increases costs and energy requirements substantially and is likely not economically feasible in most cases. The approach presented here provides a valuable framework for assessing PW as a supplemental water source in regions facing similar challenges. 
    more » « less
  3. Adsorbents featuring high-affinity phosphate-binding proteins (PBPs) have demonstrated highly selective and rapid phosphorus removal and recovery. 
    more » « less
  4. Biocatalytic technologies are characterized by targeted, rapid degradation of contaminants over a range of environmentally relevant conditions representative of groundwater, but have not yet been integrated into drinking water treatment processes. This work investigated the potential for a hybrid ion-exchange/biocatalytic process, where biocatalysis is used to treat ion-exchange waste brine, allowing reuse of the brine. The reduction rates and the fate of the regulated anions perchlorate and nitrate were tested in synthetic brines and a real-world waste brine. Biocatalysts were applied as soluble protein fractions from Azospira oryzae for perchlorate reduction and Paracoccus denitrificans and Haloferax denitrificans for nitrate reduction. In synthetic 12% brine, the biocatalysts retained activity, with rates of 32.3 ± 6.1 U (μg Mo) −1 for perchlorate ( A. oryzae ) and 16.1 ± 7.1 U (μg Mo) −1 for nitrate ( P. denitrificans ). In real-world waste brine, activities were slightly lower (20.3 ± 6.5 U (μg Mo) −1 for perchlorate and 14.3 ± 3.8 U (μg Mo) −1 for nitrate). The difference in perchlorate reduction was due to higher concentrations of nitrate, bicarbonate, and sulfate in the waste brine. The predominant end products of nitrate reduction were nitrous oxide or dinitrogen gas, depending on the source of the biocatalysts and the salt concentration. These results demonstrate biocatalytic reduction of regulated anions in a real-world waste brine, which could facilitate brine reuse for the regeneration of ion-exchange technologies and prevent reintroduction of these anions and their intermediates into the environment. 
    more » « less